120 research outputs found

    Behavior of surface and corner cracks subjected to tensile and bending loads in Ti-6Al-4V alloy

    Get PDF
    The behavior of part-through flaws with regard to failure under monotonic loading and their growth under fatigue loading was studied experimentally and analytically. Comparisons are made of experimental values of toughness obtained using surface and corner cracked specimens with those obtained using standard test specimens, and also experimental growth cycles were compared with numerical predictions using the NASA/FLAGRO computer program. Tests were conducted on various types of surface and corner cracks under tensile and bending loads. Room temperature lab air provided the test environment. The material used in this study was the Ti-6Al-4V alloy in the solution treated and aged (STA) and stress relieved condition. Detailed tabulation of the fracture toughness data and results of life prediction using the NASA/FLAGRO program are presented. Fatigue crack growth rates for the part-through cracked specimens are compared with a base curve fitted from the data obtained using standard specimens. The fatigue loading used in the crack growth testing was constant-amplitude sinusoidal type

    The Online Median Problem

    Get PDF
    We introduce a natural variant of the (metric uncapacitated) k-median problem that we call the online median problem. Whereas the k-median problem involves optimizing the simultaneous placement of k facilities, the online median problem imposes the following additional constraints: the facilities are placed one at a time, a facility cannot be moved once it is placed, and the total number of facilities to be placed, k, is not known in advance. The objective of an online median algorithm is to minimize the competitive ratio, that is, the worst-case ratio of the cost of an online placement to that of an optimal offline placement. Our main result is a constant-competitive algorithm for the online median problem running in time that is linear in the input size. In addition, we present a related, though substantially simpler, constant-factor approximation algorithm for the (metric uncapacitated) facility location problem that runs in time linear in the input size. The latter algorithm is similar in spirit to the recent primal-dual-based facility location algorithm of Jain and Vazirani, but our approach is more elementary and yields an improved running time. While our primary focus is on problems which ask us to minimize the weighted average service distance to facilities, we also show that our results can be generalized to hold, to within constant factors, for more general objective functions. For example, we show that all of our approximation results hold, to within constant factors, for the k-means objective function

    Sparseland model for speckle suppression of B-mode ultrasound images

    Get PDF
    Speckle is a multiplicative noise which is inherent in medical ultrasound images. Speckles contributes high variance between neighboring pixels reducing the visual quality of an image. Suppression of speckle noise significantly improves the diagnostic content present in the image. In this paper, we propose how sparseland model can be used for speckle suppression. The performance of the model is evaluated based on variance to mean ratio of a patch in the filtered image. The algorithm is tested on both software generated images and real time ultrasound images. The proposed algorithm has performed similar to past adaptive speckle suppression filters and seems promising in improving diagnostic content

    Multi-vehicle refill scheduling with queueing

    Full text link
    © 2017 We consider the problem of refill scheduling for a team of vehicles or robots that must contend for access to a single physical location for refilling. The objective is to minimise time spent in travelling to/from the refill station, and also time lost to queuing (waiting for access). In this paper, we present principled results for this problem in the context of agricultural operations. We first establish that the problem is NP-hard and prove that the maximum number of vehicles that can usefully work together is bounded. We then focus on the design of practical algorithms and present two solutions. The first is an exact algorithm based on dynamic programming that is suitable for small problem instances. The second is an approximate anytime algorithm based on the branch and bound approach that is suitable for large problem instances with many robots. We present simulated results of our algorithms for three classes of agricultural work that cover a range of operations: spot spraying, broadcast spraying and slurry application. We show that the algorithm is reasonably robust to inaccurate prediction of resource utilisation rate, which is difficult to estimate in cases such as spot application of herbicide for weed control, and validate its performance in simulation using realistic scenarios with up to 30 robots

    Decentralised Monte Carlo Tree Search for Active Perception

    Full text link
    We propose a decentralised variant of Monte Carlo tree search (MCTS) that is suitable for a variety of tasks in multi-robot active perception. Our algorithm allows each robot to optimise its own individual action space by maintaining a probability distribution over plans in the joint-action space. Robots periodically communicate a compressed form of these search trees, which are used to update the locally-stored joint distributions using an optimisation approach inspired by variational methods. Our method admits any objective function defined over robot actions, assumes intermittent communication, and is anytime. We extend the analysis of the standard MCTS for our algorithm and characterise asymptotic convergence under reasonable assumptions. We evaluate the practical performance of our method for generalised team orienteering and active object recognition using real data, and show that it compares favourably to centralised MCTS even with severely degraded communication. These examples support the relevance of our algorithm for real-world active perception with multi-robot systems

    Planning-Aware Communication for Decentralised Multi-Robot Coordination

    Full text link
    © 2018 IEEE. We present an algorithm for selecting when to communicate during online planning phases of coordinated multi-robot missions. The key idea is that a robot decides to request communication from another robot by reasoning over the predicted information value of communication messages over a sliding time-horizon, where communication messages are probability distributions over action sequences. We formulate this problem in the context of the recently proposed decentralised Monte Carlo tree search (Dec-MCTS) algorithm for online, decentralised multi-robot coordination. We propose a particle filter for predicting the information value, and a polynomial-time belief-space planning algorithm for finding the optimal communication schedules in an online and decentralised manner. We evaluate the benefit of informative communication planning for a multi-robot information gathering scenario with 8 simulated robots. Our results show reductions in channel utilisation of up to four-fifths with surprisingly little impact on coordination performance

    Intrusion Detection and Anomaly Detection System Using Sequential Pattern Mining

    Full text link
    Nowadays the security methods from password protected access up to firewalls which are used to secure the data as well as the networks from attackers. Several times these type of security methods are not enough to protect data. We can consider the use of Intrusion Detection Systems (IDS) is the one way to secure the data on critical systems. Most of the research work is going on the effectiveness and exactness of the intrusion detection, but these attempts are for the detection of the intrusions at the operating system and network level only. It is unable to detect the unexpected behavior of systems due to Malicious transactions in databases. The method used for spotting any interferes on the information in the form of database known as database intrusion detection. It relies on enlisting the execution of a transaction. After that, if the recognized pattern is aside from those regular patterns actual is considered as an intrusion. But the identified problem with this process is that the accuracy algorithm which is used may not identify entire patterns. This type of challenges can affect in two ways. 1) Missing of the database with regular patterns. 2) The detection process neglects some new patterns. Therefore we proposed sequential data mining method by using new Modified Apriori Algorithm. The algorithm upturns the accurateness and rate of pattern detection by the process. The Apriori algorithm with modifications is used in the proposed model

    High-Throughput Inference of Protein-Protein Interaction Sites from Unassigned NMR Data by Analyzing Arrangements Induced By Quadratic Forms on 3-Manifolds

    Get PDF
    We cast the problem of identifying protein-protein interfaces, using only unassigned NMR spectra, into a geometric clustering problem. Identifying protein-protein interfaces is critical to understanding inter- and intra-cellular communication, and NMR allows the study of protein interaction in solution. However it is often the case that NMR studies of a protein complex are very time-consuming, mainly due to the bottleneck in assigning the chemical shifts, even if the apo structures of the constituent proteins are known. We study whether it is possible, in a high-throughput manner, to identify the interface region of a protein complex using only unassigned chemical shift and residual dipolar coupling (RDC) data. We introduce a geometric optimization problem where we must cluster the cells in an arrangement on the boundary of a 3-manifold. The arrangement is induced by a spherical quadratic form, which in turn is parameterized by SO(3)xR^2. We show that this formalism derives directly from the physics of RDCs. We present an optimal algorithm for this problem that runs in O(n^3 log n) time for an n-residue protein. We then use this clustering algorithm as a subroutine in a practical algorithm for identifying the interface region of a protein complex from unassigned NMR data. We present the results of our algorithm on NMR data for 7 proteins from 5 protein complexes and show that our approach is useful for high-throughput applications in which we seek to rapidly identify the interface region of a protein complex

    A Loosely Coupled Approach for the CFD Code US3D and Radiation Code NEQAIR

    Get PDF
    Couple the CFD code, US3D, with the radiation code, NEQAIR. Implement line of sight extraction tool for an unstructured grid

    Stress Intensity Factors for Part-Through Surface Cracks in Hollow Cylinders

    Get PDF
    Flaws resulting from improper welding and forging are usually modeled as cracks in flat plates, hollow cylinders or spheres. The stress intensity factor solutions for these crack cases are of great practical interest. This report describes some recent efforts at improving the stress intensity factor solutions for cracks in such geometries with emphasis on hollow cylinders. Specifically, two crack configurations for cylinders are documented. One is that of a surface crack in an axial plane and the other is a part-through thumb-nail crack in a circumferential plane. The case of a part-through surface crack in flat plates is used as a limiting case for very thin cylinders. A combination of the two cases for cylinders is used to derive a relation for the case of a surface crack in a sphere. Solutions were sought which cover the entire range of the geometrical parameters such as cylinder thickness, crack aspect ratio and crack depth. Both the internal and external position of the cracks are considered for cylinders and spheres. The finite element method was employed to obtain the basic solutions. Power-law form of loading was applied in the case of flat plates and axial cracks in cylinders and uniform tension and bending loads were applied in the case of circumferential (thumb-nail) cracks in cylinders. In the case of axial cracks, the results for tensile and bending loads were used as reference solutions in a weight function scheme so that the stress intensity factors could be computed for arbitrary stress gradients in the thickness direction. For circumferential cracks, since the crack front is not straight, the above technique could not be used. Hence for this case, only the tension and bending solutions are available at this time. The stress intensity factors from the finite element method were tabulated so that results for various geometric parameters such as crack depth-to-thickness ratio (a/t), crack aspect ratio (a/c) and internal radius-to-thickness ratio (R/t) or the crack length-to-width ratio (2c/W) could be obtained by interpolation and extrapolation. Such complete tables were then incorporated into the NASA/FLAGRO computer program which is widely used by the aerospace community for fracture mechanics analysis
    corecore